One-Dimensional Elastic Collision Simulation
Using this simulation, you can demonstrate the conservation laws in a one-dimensional elastic collision (The law of conservation of linear momentum and the law of conservation of kinetic energy).
Using this simulation, you can demonstrate the conservation laws in a one-dimensional elastic collision (The law of conservation of linear momentum and the law of conservation of kinetic energy).
A new simulation, that simulates the free fall of an object (ball). This simulation gives the ability to measure the acceleration of gravity by taking successive shots of the falling object with recording the time of each shot and measuring the coordinate y for each shot. It also enables us to check the famous free fall equation:
y = (1/2) gt²
This story always reminds me how much work we still have to do in Lebanon to bridge the gap in technological literacy among educators!
This is a new simulation of a rotating disk being illuminated by a stroboscope. You can control the speed of the disk and the frequency of the stroboscope, and see how the white spot on the disk appears. You can check all the cases of stationary appearance and the slow-motion appearance.
A useful simulation for the students in their studies and for the physics teachers in their presentations of electricity lessons.
The simulation includes alternating generators (AC) and direct generators (DC).
In this simulation, the oscilloscope can display waves coming from generators similar to the real ones.
In this game, you must employ the projectile equations to win.
The game consists of three levels, each of which must be completed by scoring at least 8 out of a possible 10 tries. In the first level, you must hit a ground target that shifts position after each attempt. In the second level, you will need to alter the ball’s trajectory to pass over a wall. In the third level, the target flies and changes position both horizontally and vertically in each trial.
Using this simulation, you can experience the phenomenon of charging a metallic ball by induction in the first stage and charging the ball by contact in the second stage after the charged rod touches the ball. The displayed charges are for an illustrational purpose, and they are not seen in reality. You can disable the display of charges on the rod and on the ball.
In this simulation, you can try two situations, one in which the rod is positively charged and another in which the rod is negatively charged, and you will see that the two situations result in the same observation.