Conservation of linear momentum

لقراءة النسخة العربية أنقر هنا.

This video shows how the cannon recoils when it shoots the bullet. Notice the sandbags that are put behind the wheels of the cannon to stop it from rolling off. Otherwise, it will recoil a larger distance due to the high impact of shooting the bullet.
It is noticeable that the backward recoil velocity of the cannon is much less than the forward launching velocity of the bullet, while the mass of the bullet is much less than the mass of the cannon. This leads us to conclude that there is an inverse relation between the velocity (speed in a specific direction) and the mass of the interacting bodies (in this example, the cannon and the bullet).
If the experiment is done in a situation where the net external force is zero on the loaded cannon just before and just after firing (like when the weight of the cannon is balanced with the normal reaction of the ground), then, when we calculate the product of the mass of the bullet by its velocity and the product of the mass of the cannon by its velocity just before and just after firing, we will find that before firing both were at rest so the product is zero for both, while, after firing, the two products are of the same magnitude but the velocities of the cannon and the bullet are of opposite directions. Mathematically:

    \[m\overrightarrow{v_{i}} + M\overrightarrow{V_{i}} = \overrightarrow{0}\]

    \[\text{and\ m}\overrightarrow{v_{f}} + M\overrightarrow{V_{f}} = \overrightarrow{0}\]

where

m is the mass of the bullet;

M is the mass of the cannon;

\overrightarrow{v_{i}} is the initial velocity of the bullet just
before firing;

\overrightarrow{V_{i}} is the initial velocity of the cannon just
before firing;

\overrightarrow{v_{f}} is the final velocity of the bullet just
after firing;

and \overrightarrow{V_{f}} is the final velocity of the cannon just
after firing.

Hence:

    \[m\overrightarrow{v_{i}} + M\overrightarrow{V_{i}} = m\overrightarrow{v_{f}} + M\overrightarrow{V_{f}}\]

The above equation represents the principle of conservation of the linear momentum of the system formed of the cannon and the bullet
{cannon, bullet}. The more general form of this principle says that the summation of the linear momentum of an isolated system of particles is conserved, i.e. remains constant. (Isolated means that the net
external force on the system is zero, i.e. \Sigma\overrightarrow{F_{\text{ext}}} = \overrightarrow{0}). Mathematically:

    \[\Sigma\overrightarrow{P_{i}} = \Sigma\overrightarrow{P_{f}}\ \]

where

    \[\overrightarrow{p} = m\overrightarrow{v}\]

is the linear momentum of the bullet, defined as the product of its mass by its velocity, and

    \[\overrightarrow{P} = M\overrightarrow{V}\]

is the linear momentum of the cannon, defined as the product of its mass by its velocity, and

\Sigma\overrightarrow{P_{i}} = \overrightarrow{p_{i}} + \overrightarrow{P_{i}}
is the summation of the initial linear momentums of the system {cannon, bullet}, and

\Sigma\overrightarrow{P_{f}} = \overrightarrow{p_{f}} + \overrightarrow{P_{f}}
is the summation of the final linear momentums of the system {cannon, bullet}.

Note that \Sigma\overrightarrow{P} can be the summation for a system of any number of particles.

So, the principle of conservation of linear momentum, in a short and general mathematical form is:

    \[\Sigma\overrightarrow{F_{\text{ext}}} = \overrightarrow{0} \Longrightarrow \Sigma\overrightarrow{P} = \overrightarrow{\text{constant}}\]

Similar Posts

  • قانون نيوتن الأول

    في هذه التجربة، ينعدم الاحتكاك تقريبا تحت السكوتربسبب الوسادة الهوائية، لذلك تتأثر السكوترفقط بقوة الجاذبية (وزنها) وبردة فعل السكة. فيمكننا القول أن القوة الصافية على السكوتر صفر.

    فعندما يكون السكوتر في حالة سكون ، يبقى في حالة سكون. وعندما يتم دفعها ومن ثم تركها للتحرك من تلقاء نفسها، فإنها ستستمر في التحرك بسرعة ثابتة ما لم تصل إلى نهاية المسار (توقفه قوة خارجية).

  • Inertia

    When you feel your body is leaning forward when the car is braking, or when your body leans backward when the car takes off, you are experiencing a property of your body that is called “inertia”.

  • Newton’s second law

    Newton’s second law states that the net force on a body and the acceleration it gains are directly proportional. The constant of proportionality is the mass of the object.
    In this experiment, the weight of the anvil is supported by the air pressure underneath it, but even though, its huge mass requires huge force to make accelerate (starts from rest to a certain speed).

  • Torque

    A force may have a turning effect (or twisting effect). This turning effect depends on the magnitude F of the force and the distance d from the center where the force is applied perpendicularly.

  • Newton’s first law

    In this experiment, the air cushion under the scooter assures that there is almost no friction, so the scooter is acted upon by the gravitational force (its weight) and the reaction of the track. Then we can say that the net force on the scooter is null.
    Now when the scooter is at rest, it remains at rest. But when it is given a push and then is left to move on its own, it will keep moving at constant speed unless it hits the end of the track (a force stops it).

  • قانون نيوتن الثاني

    ينص قانون نيوتن الثاني على أن القوة الصافية المؤثرة على الجسم والتسارع الذي يكتسبه متناسبين بشكل مباشر. وثابت التناسب هو كتلة الجسم. الصيغة الرياضية لقانون نيوتن الثاني هي:

    في هذه التجربة، يتم دعم وزن السندان بواسطة ضغط الهواء من تحته، ولكن على الرغم من ذلك، فإن كتلته الضخمة تتطلب قوة كبيرة للتسريع (للوصول إلى سرعة معينة ابتداء من السكون).

Leave a Reply

Your email address will not be published. Required fields are marked *

nineteen − seventeen =