Conservation of linear momentum

لقراءة النسخة العربية أنقر هنا.

This video shows how the cannon recoils when it shoots the bullet. Notice the sandbags that are put behind the wheels of the cannon to stop it from rolling off. Otherwise, it will recoil a larger distance due to the high impact of shooting the bullet.
It is noticeable that the backward recoil velocity of the cannon is much less than the forward launching velocity of the bullet, while the mass of the bullet is much less than the mass of the cannon. This leads us to conclude that there is an inverse relation between the velocity (speed in a specific direction) and the mass of the interacting bodies (in this example, the cannon and the bullet).
If the experiment is done in a situation where the net external force is zero on the loaded cannon just before and just after firing (like when the weight of the cannon is balanced with the normal reaction of the ground), then, when we calculate the product of the mass of the bullet by its velocity and the product of the mass of the cannon by its velocity just before and just after firing, we will find that before firing both were at rest so the product is zero for both, while, after firing, the two products are of the same magnitude but the velocities of the cannon and the bullet are of opposite directions. Mathematically:

    \[m\overrightarrow{v_{i}} + M\overrightarrow{V_{i}} = \overrightarrow{0}\]

    \[\text{and\ m}\overrightarrow{v_{f}} + M\overrightarrow{V_{f}} = \overrightarrow{0}\]

where

m is the mass of the bullet;

M is the mass of the cannon;

\overrightarrow{v_{i}} is the initial velocity of the bullet just
before firing;

\overrightarrow{V_{i}} is the initial velocity of the cannon just
before firing;

\overrightarrow{v_{f}} is the final velocity of the bullet just
after firing;

and \overrightarrow{V_{f}} is the final velocity of the cannon just
after firing.

Hence:

    \[m\overrightarrow{v_{i}} + M\overrightarrow{V_{i}} = m\overrightarrow{v_{f}} + M\overrightarrow{V_{f}}\]

The above equation represents the principle of conservation of the linear momentum of the system formed of the cannon and the bullet
{cannon, bullet}. The more general form of this principle says that the summation of the linear momentum of an isolated system of particles is conserved, i.e. remains constant. (Isolated means that the net
external force on the system is zero, i.e. \Sigma\overrightarrow{F_{\text{ext}}} = \overrightarrow{0}). Mathematically:

    \[\Sigma\overrightarrow{P_{i}} = \Sigma\overrightarrow{P_{f}}\ \]

where

    \[\overrightarrow{p} = m\overrightarrow{v}\]

is the linear momentum of the bullet, defined as the product of its mass by its velocity, and

    \[\overrightarrow{P} = M\overrightarrow{V}\]

is the linear momentum of the cannon, defined as the product of its mass by its velocity, and

\Sigma\overrightarrow{P_{i}} = \overrightarrow{p_{i}} + \overrightarrow{P_{i}}
is the summation of the initial linear momentums of the system {cannon, bullet}, and

\Sigma\overrightarrow{P_{f}} = \overrightarrow{p_{f}} + \overrightarrow{P_{f}}
is the summation of the final linear momentums of the system {cannon, bullet}.

Note that \Sigma\overrightarrow{P} can be the summation for a system of any number of particles.

So, the principle of conservation of linear momentum, in a short and general mathematical form is:

    \[\Sigma\overrightarrow{F_{\text{ext}}} = \overrightarrow{0} \Longrightarrow \Sigma\overrightarrow{P} = \overrightarrow{\text{constant}}\]

Similar Posts

  • |

    انحفاظ الزخم الخطي

    لو تم إجراء هذه التجربة في ظروف يكون فيها صافي القوى الخارجية صفرًا على المدفع المُحمّل قبل وبعد إطلاق النار مباشرة (على سبيل المثال، عندما يكون وزن المدفع متوازناً مع رد الفعل العمودي للأرض)، فإن حسبنا عندئذٍ حاصل ضرب كتلة القذيفة بسرعتها المتجهة وحاصل ضرب كتلة المدفع بسرعته المتجهة قبل وبعد الإطلاق مباشرة، سنجد أنه قبل إطلاق النار كان كلاهما في حالة سكون، وبالتالي يكون الناتج صفرًا لكليهما، بينما نجد أن الناتجين، بعد إطلاق النار ذوا مقدار متساوٍ، ولكن باتجاهين متعاكسين.

  • |

    تجربة السقوط الحر

    توضح هذه التجربة أنه عند انعدام مقاومة الهواء، يصل جسمان يسقطان بحرية من نفس الارتفاع إلى الأرض في نفس اللحظة. يكتسب كلا الجسمين نفس السرعة أثناء السقوط، مما يثبت أنهما يختبران نفس التسارع – تسارع السقوط الحر. تشرح التجربة سبب رؤيتنا للأجسام الثقيلة تسقط أسرع من الأجسام الخفيفة بسبب تأثيرات مقاومة الهواء.

  • |

    عزم الدوران

    يوضح هذا الدرس مفهوم عزم الدوران (عزم القوة) والتوازن الدوراني. تُحدث القوة تأثيراً دورانياً يعتمد على مقدار القوة والمسافة العمودية من نقطة المحور. عند التوازن، يساوي عزم الدوران في اتجاه عقارب الساعة عزم الدوران عكس عقارب الساعة. يتضمن المنشور معادلات حساب عزم الدوران للقوى العمودية والمائلة.

  • |

    Course: Crafting Effective Learning Assessments

    I created this course and published it on my Moodle platform. Each module is comprised of SCORM package and a quiz, with an unofficial completion certificate as a template that can be costumed to the specifications of your organization. The course is tracked, and you must successfully complete each chapter to unlock the next one. The course is fully learner-centered.

  • Simplicity is power

    In creating interactive educational tools, simplicity is power. A minimalist design doesn’t just look clean; it helps learners focus on what truly matters. Instead of overwhelming the user with unnecessary details, focus on providing a clear, interactive interface that mirrors the real-world experience.

  • | |

    Interference of Waves Simulation

    This interactive wave interference simulation demonstrates the fundamental principles of wave superposition using two sources. Users can adjust key parameters including wavelength, amplitude, phase difference, and source separation to observe how waves interact and produce complex interference patterns. The simulation features a real-time probe tool that displays individual wave amplitudes and their resultant superposition, showing constructive and destructive interference at different points in the field. The visual representation includes radiating wave fronts from both sources, with characteristic alternating bands of high and low amplitude clearly visible throughout the interference pattern.

Leave a Reply

Your email address will not be published. Required fields are marked *

1 + sixteen =