One-Dimensional Elastic Collision Simulation

Using this simulation, you can demonstrate the conservation laws in a one-dimensional elastic collision (The law of conservation of linear momentum and the law of conservation of kinetic energy).
Using this simulation, you can demonstrate the conservation laws in a one-dimensional elastic collision (The law of conservation of linear momentum and the law of conservation of kinetic energy).
I created this course and published it on my Moodle platform. Each module is a SCORM package, with a course evaluation survey at the end and a completion certificate.
The course is tracked, and you must successfully complete each chapter to unlock the next one. The course is fully learner-centered.
Using this simulation, you can experience the phenomenon of charging a metallic ball by induction in the first stage and charging the ball by contact in the second stage after the charged rod touches the ball. The displayed charges are for an illustrational purpose, and they are not seen in reality. You can disable the display of charges on the rod and on the ball.
In this simulation, you can try two situations, one in which the rod is positively charged and another in which the rod is negatively charged, and you will see that the two situations result in the same observation.
In creating interactive educational tools, simplicity is power. A minimalist design doesn’t just look clean; it helps learners focus on what truly matters. Instead of overwhelming the user with unnecessary details, focus on providing a clear, interactive interface that mirrors the real-world experience.
If you or your student or child are having difficulties in learning long division, then you will find this simulation comprehensive and instructional, that guides the learner through the process step by step. This application is for long division with float quotient. Another application on long division with remainder is also available in the simulations section.
If this experiment is done in a situation where the net external force is zero on the loaded cannon just before and just after firing (like when the weight of the cannon is balanced with the normal reaction of the ground), then, when we calculate the product of the mass of the bullet by its velocity and the product of the mass of the cannon by its velocity just before and just after firing, we will find that before firing both were at rest so the product is zero for both, while, after firing, the two products are of the same magnitude but the velocities of the cannon and the bullet are of opposite directions.
These lines portray a tale of creation and vanishing. It describes the creation of a photon, its subsequent disappearance when an electron absorbs it on the cathode plate’s surface, the subsequent departure of the electron from the cathode, and lastly the eventual disappearance of the electron when it reaches the other plate and captured.