Verifying Newton’s second law

Newton's second law

لقراءة النسخة العربية أنقر هنا.

This experiment was performed in a space shuttle where the gravity is almost zero, so the balls were not affected by any force except the blow of the astronaut. Note that with the same blow (same force) on each ball, the lighter ball accelerates the most, while the heavier one accelerates the least, which complies with Newton’s second law:

    \[\sum\overrightarrow{F} = m \bullet \overrightarrow{a}\]

This equation implies that, for the same net force, the mass and the acceleration are inversely proportional. In other words, for the same net force, as the mass increases, the acceleration decreases, and vice versa.

Similar Posts

  • Don’t do it, train your own AI to do it!

    If this future becomes reality, there will be a massive wave of job displacement as AI takes over across various industries and job markets. But a wide horizon of opportunities will rise. Instead of a position of making decisions in a company, there will be a position of training the AI to make that decision and to maintain its logic.
    As a bizarre example, companies might not need IT (Information Technology) officers anymore! Instead, they might employ AIT (Artificial Intelligence Technology) officers, whose main responsibility is training and maintaining the company’s AI model to solve the company’s technical issues!

  • |

    Newton’s second law

    Newton’s second law states that net force and acceleration are directly proportional, with mass as the constant of proportionality (F=ma). This experiment uses an anvil supported by air pressure to demonstrate that even when weight is counteracted, the anvil’s huge mass still requires enormous force to accelerate it from rest. A powerful illustration of the relationship between force, mass, and acceleration.

  • |

    القصور الذاتي

    القصور الذاتي هو خاصية المادة التي تقاوم التغييرات في السرعة المتجهة. عندما تكبح السيارة، يميل جسمك للأمام؛ وعندما تتسارع، تميل للخلف – كلاهما يوضح القصور الذاتي عملياً. كلما زادت كتلة جسمك، كان التأثير أكثر وضوحاً. يشمل القصور الذاتي مقاومة التغييرات في كل من مقدار السرعة واتجاه الحركة، مما يجعله مفهوماً أساسياً لفهم سلوك الأجسام.

  • |

    Torque

    This demonstration explains torque (moment of force) and rotational equilibrium. A force can create a turning effect that depends on both the force magnitude and the perpendicular distance from the pivot point. At equilibrium, clockwise moments equal counterclockwise moments. The post includes formulas for calculating torque with perpendicular and angled forces.

  • | |

    Area Model of Partial Products

    Elementary math teachers know the importance of this model in teaching the concept of applying distributive property in area model.
    The idea is to break one large area (which represents the product of two numbers) into several pieces (products of smaller numbers), then to find the areas of the pieces individually, and finally add to get the area of the whole (the product of the given numbers).

Leave a Reply

Your email address will not be published. Required fields are marked *

sixteen − one =