Similar Posts

Over 2,000 people visited Virtual Oscilloscope in mere 7 days
Designed to replicate the functionality of a real oscilloscope, the Virtual Oscilloscope has captivated the attention of students, educators, and electronics enthusiasts alike. Its intuitive interface and accurate waveform representations have garnered positive feedback, making it an invaluable resource for anyone interested in circuit analysis and electronic waveforms. I extend my gratitude to all those who have supported me and invite others to join this immersive learning experience.

Virtual Oscilloscope
A useful simulation for the students in their studies and for the physics teachers in their presentations of electricity lessons.
The simulation includes alternating generators (AC) and direct generators (DC).
In this simulation, the oscilloscope can display waves coming from generators similar to the real ones.

Interference of Waves Simulation
This interactive wave interference simulation demonstrates the fundamental principles of wave superposition using two sources. Users can adjust key parameters including wavelength, amplitude, phase difference, and source separation to observe how waves interact and produce complex interference patterns. The simulation features a real-time probe tool that displays individual wave amplitudes and their resultant superposition, showing constructive and destructive interference at different points in the field. The visual representation includes radiating wave fronts from both sources, with characteristic alternating bands of high and low amplitude clearly visible throughout the interference pattern.

A new publication based on the Virtual Oscilloscope simulation
The paper: Using a web-based and stand-alone oscilloscope for physics experiment during Covid-19 pandemic, Mahizah Ismail et al (2023), Phys. Educ. 58 015006, is based on the Virtual Oscilloscope simulation. This paper was authored by Mahizah Ismail, Farid Minawi, Wan Zul Adli Wan Mokhtar, Noraihan L Abdul Rashid and Ahmad K Ariffin.
The article DOI: https://iopscience.iop.org/article/10.1088/1361-6552/ac95eb

When my Virtual Oscilloscope was mistaken for just a picture!
This story always reminds me how much work we still have to do in Lebanon to bridge the gap in technological literacy among educators!

كود لا ينسى
توقفت عن التفكير كمبرمج في تلك المرحلة وعدت إلى التفكير كفيزيائي. لقد أذهلني كيف يمكننا محاكاة الظواهر الفيزيائية ببضعة أسطر من التعليمات البرمجية.